Circle the correct answer in the following questions.

- a

MTCG1018 – Pure Mathematics Prescreening Specimen Paper Page 1 of 13
Each question carries 4 marks.

[Total Marks 100]

1) An oblique triangle has …

- a) a right angle
- b) one obtuse angle
- c) two obtuse angles

2) In the triangle below, the value of \(y \) is …

\[
\begin{align*}
&65^\circ \quad 9 \\
&75^\circ \quad x \quad y
\end{align*}
\]

- a) 4.8
- b) 84
- c) 8.4

3) The volume of a cylinder whose height is 6 \(cm \) and diameter 8 \(cm \) is …

- a) 1206 \(cm^3 \)
- b) 302 \(cm^3 \)
- c) 150 \(cm^3 \)

4) If the area of a circle is \(49\pi m^2 \) then its radius is …

- a) 7 \(m \)
- b) \(\sqrt{7} m \)
- c) 49 \(m \)

5) The graph between class limits and frequency is called …

- a) Histogram
- b) Pie Chart
- c) Bar Chart

6) … is an example of Quantitative-continuous data.
7) If the mean of the following distribution is 9, then the value of \(x \) is …

<table>
<thead>
<tr>
<th>Marks</th>
<th>4</th>
<th>6</th>
<th>(x + 7)</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of students</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

a) 2 b) 2.5 c) 20

8) The standard deviation of the data from the sample observations 1, 4, 5, 7, 9 is …

a) 5 b) 3 c) 2

9) If there are 11 books on a shelf, then 6 books can be arranged in … ways.

a) 332640 b) 66 c) 462

10) If a die is thrown once. The probability of getting a prime number is …

a) 0.16 b) 0.3 c) 0.5

11) If A and B are independent events and \(P(A) = \frac{2}{5} \) and \(P(B) = \frac{3}{7} \) then \(P(A \cup B) \) is …
12) If \(P(A \cap B) = \frac{5}{21} \) and \(P(A) = \frac{5}{9} \) then \(P(B|A) = \ldots \)

| a) \(\frac{1}{3} \) | b) \(\frac{3}{7} \) | c) \(\frac{7}{13} \) |

13) … **line test** is used to determine if a graph represents a **function**

| a) Horizontal | b) Oblique | c) Vertical |

14) The ordered pairs … represent a **constant function**

| a) \{ (2, 2), (3, 3), (1, 1) \} | b) \{ (c, 1), (b, 2), (c, 3) \} | c) \{ (1, c), (2, c), (3, b) \} |

15) Given that \(f(x) = x - 2 \) and \(g(x) = 5x + 3 \), then \(f(g(x)) \ldots \)

| a) \(5x + 1 \) | b) \(5x - 1 \) | c) \(6x - 5 \) |

16) The graph of the function \(y = (0.3)^x \) shows ………..
a) Limited growth
b) decay
c) Unlimited growth

17) If \(\left(\frac{1}{2} \right)^{3x} = 2^{x-4} \), then the value of \(x \) is…

| a) 1 | b) -2 | c) 3 |

18) The expression for \(\log (xy^2) \) is…

| a) \(2\log x + 2\log y \) | b) \(2\log x + \log y \) | c) \(\log x + 2\log y \) |

19) If \(\log_b 2 = 0.69 \), \(\log_b 3 = 1.10 \) and \(\log_b 5 = 1.61 \), then \(\log_b 30 \) is equal to …

| a) 2.4 | b) 3.4 | c) 1.22 |

20) The function \(f(x) = \begin{cases}
 x - 3 & \text{if } x > 2 \\
 -5 & \text{if } x = 2 \\
 3x - 7 & \text{if } x < 2
\end{cases} \) is not continuous at \(x = 2 \) because…

| a) \(f(2) \) is not defined | b) \(\lim_{x \to 2} f(x) \) does not exist | c) \(\lim_{x \to 2} f(x) \neq f(2) \) |
21) For the function \(f(x) \) whose graph is given below, the correct statement is…

- a) \(f(3) = \lim_{x \to 3} f(x) \)
- b) \(\lim_{x \to 3} f(x) = 4 \)
- c) \(\lim_{x \to 3} f(x) = \lim_{x \to 3} f(x) = 2 \)

22) The value of \(\lim_{x \to \frac{1}{3}} \left(\frac{9x^2-1}{3x-1} \right) \) is…

- a) 0
- b) 2
- c) 3

23) If \(y = 3x^2 - 5x + 4 \), then \(\frac{dy}{dx} = \ldots \)

- a) \(6x - 5 \)
- b) \(3x - 5 \)
- c) \(6x + 4 \)

24) If \(y = \frac{x^2 - 1}{3x} \), then \(\frac{dy}{dx} = \ldots \)

- a) \(\frac{x^2 - 1}{3x^2} \)
- b) \(\frac{x^2 + 1}{x^2} \)
- c) \(\frac{x^2 + 1}{3x^2} \)

25) The derivative of \(5\cos^2 3x \) is …

- a) \(5\cos^2 3x - 15x\sin 6x \)
- b) \(5\cos^2 3x - 5x\sin 3x \)
- c) \(\cos^2 3x - 15x\sin 6x \)

END OF QUESTIONS
Formula Sheet

Law of Sines and Cosines

\[
\begin{align*}
\sin \alpha &= \frac{a}{b} = \frac{\sin \beta}{c} = \frac{\sin \gamma}{c} \\
a^2 &= b^2 + c^2 - 2bc \cos \alpha \\
b^2 &= a^2 + c^2 - 2ac \cos \beta \\
c^2 &= a^2 + b^2 - 2ab \cos \gamma \\
\cos \alpha &= \frac{b^2 + c^2 - a^2}{2bc} \\
\cos \beta &= \frac{a^2 + c^2 - b^2}{2ac} \\
\cos \gamma &= \frac{a^2 + b^2 - c^2}{2ab}
\end{align*}
\]

Perimeter, Area and Volume

Triangle:

\[
\begin{align*}
P &= a + b + c \\
A &= \frac{1}{2}bh
\end{align*}
\]

Circle:

- Circumference \((C) = 2\pi r = \pi d\)
- \(A = \pi r^2\)

Rectangle:

- \(P = 2l + 2b\)
- \(A = lb\)

Sector:

- Length of the arc: \(L = \theta r\) if \(\theta\) is in radians
- \(L = \theta \left(\frac{\pi}{180} \right) r\) if \(\theta\) is in degrees
- Area: \(A = \frac{1}{2} Lr\)
- \(A = \frac{1}{2} \theta r^2\) if \(\theta\) is in radians
- \(A = \theta \left(\frac{\pi}{360} \right) r^2\) if \(\theta\) is in degrees

Square:

- \(P = 4s\)
- \(A = s^2\)
Trapezium:
\[A = \frac{1}{2} (a + b)h \]

Parallelogram:
\[A = bh \]

Cuboid:
\[V = l \times b \times h \]
\[LSA = 2h(l + b) \]
\[TSA = 2(lb + bh + hl) \]

Pyramid:
\[V = \frac{1}{3} \text{Area of the base} \times \text{Height} = \frac{1}{3}Ah \]

Cube:
\[V = S^3 \]
\[LSA = 4s^2 \]
\[TSA = 6s^2 \]

Prism:
\[V = \text{Area of cross section} \times \text{Length} = \left(\frac{1}{2}bh \right)L \]

Cone:
\[V = \frac{1}{3} \pi r^2 h \]
\[CSA = \pi rl \]
\[TSA = \pi r^2 + \pi rl \]

Cylinder:
\[V = \pi r^2h \]
\[CSA = 2\pi rh \]
\[TSA = 2\pi r(r + h) \]
Sphere:

\[V = \frac{4}{3} \pi r^3 \]
\[CSA = TSA = 4\pi r^2 \]

Statistics

Relative frequency = \(\frac{f \text{ of the class}}{\sum f} \)

\[\theta = \text{relative frequency} \times 360^\circ \]

standard deviation = \(\sqrt{\text{Variance}} \)

For ungrouped data

Mean = \(\bar{x} = \frac{\sum x}{n} \)

Sample Variance = \(s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1} \)

or \(s^2 = \frac{n \sum x_i^2 - (\sum x_i)^2}{n(n-1)} \)

For grouped data

Mean = \(\bar{x} = \frac{\sum f_i x_i}{\sum f_i} \)

Median = \(L_m + \left[\frac{\frac{N-cf_m}{f_m}}{i} \right] \)

Where, \(L_m \) = lower class boundary of the median class
\(N \) = the number of cases (items) in the set.
\(cf_m \) = the cumulative frequency before the median class.
\(f_m \) = frequency of the median class

\(i \) = class width or class size

Mode = \(L_{mo} + \left[\frac{\Delta_1}{\Delta_1 + \Delta_2} \right] i \)

Where, \(L_{mo} \) = lower class boundary of the modal class
\(\Delta_1 \) = the difference between the frequency of the modal class and the frequency of the class before the modal class.
\(\Delta_2 \) = the difference between the frequency of the modal class and the frequency of the class after the modal class.

\(i \) = class width or class size

Sample Variance = \(s^2 = \frac{\sum f_i(x_i - \bar{x})^2}{n-1} \)

or \(s^2 = \frac{n \sum f_i x_i^2 - (\sum f_i x_i)^2}{n(n-1)} \)

Probability

1) If an experiment can result in any one of \(N \) different equally likely outcomes, and if exactly \(n \) of these outcomes corresponds to event A, then the probability of event A is given by \(P(A) = \frac{n}{N} \)

2) The number of permutations of \(n \) distinct objects is \(n! \)

3) The number of permutations of \(n \) distinct objects taken \(r \) at a time is \(_nP_r \)

4) The number of permutations of \(n \) distinct objects arranged in a circle is \((n-1)! \)

5) The number of combinations of \(n \) distinct objects taken \(r \) at a time is: \(_nC_r \)

6) If A and B are any two events, then
\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]

7) If A and B are two mutually exclusive events, then \(P(A \cup B) = P(A) + P(B) \)
8) If A and A' are complementary events, then $P(A) + P(A') = 1$

9) If in an experiment, the events A and B can both occur, then $P(A \cap B) = P(A) \cdot P(B|A)$

10) If two events A and B are independent, then $P(A \cap B) = P(A) \cdot P(B)$.

Properties of exponential function

1) $a^x a^y = a^{x+y}$

2) $(a^x)^y = a^{xy}$

3) $(ab)^x = a^x b^x$

4) $\left(\frac{a^x}{b^x}\right) = \frac{a^x}{b^x}$

5) $\frac{a^x}{a^y} = a^{x-y}$

6) $a^x = a^y$ if and only if $x = y$

7) $a^x = b^x$ if and only if $a = b$

Definition of logarithmic function

$y = \log_a x \Leftrightarrow x = a^y$

Properties of Logarithms

1) $\log_a (xy) = \log_a x + \log_a y$

2) $\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$

3) $\log_a x^b = b \log_a x$

Quadratic Equation

Solution of $ax^2 + bx + c = 0$ is given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Rules Of Differentiation

1. $\frac{d(c)}{dx} = 0$ where c is any constant.

2. $\frac{d}{dx} [a \cdot f(x)] = a \cdot \frac{df(x)}{dx}$

3. $\frac{d(x^n)}{dx} = nx^{n-1}$

4. $\frac{d}{dx} [f(x) \pm g(x)] = f'(x) \pm g'(x)$

5. $\frac{d}{dx} [f(x) \cdot g(x)] = f(x) \cdot g'(x) + g(x) \cdot f'(x)$

or

$$\frac{d}{dx} [u \cdot v] = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}$$

where u and v are two different functions of x.

6. if $y = \frac{f(x)}{g(x)}$, then $\frac{dy}{dx} = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$

General Power form:

$$\frac{d(u^n)}{dx} = nu^{n-1} \cdot \frac{du}{dx}$$

where $u = f(x)$.

Derivatives of Trigonometric Functions

1. $\frac{d}{dx} (\sin u) = \cos u \cdot \frac{du}{dx}$ where $u = f(x)$.

2. $\frac{d}{dx} (\cos u) = -\sin u \cdot \frac{du}{dx}$

3. $\frac{d}{dx} (\tan u) = \sec^2 u \cdot \frac{du}{dx}$

Derivatives of Exponential Functions

Let a be any real number but not zero and $u = f(x)$
1. \(\frac{d}{dx} (a^u) = a^u \ln a \cdot \frac{d(u)}{dx} \)

2. \(\frac{d}{dx} (e^u) = e^u \cdot \frac{d(u)}{dx} \)

Derivatives of Logarithmic Functions

Let \(a \) be any real number but not zero and \(u = f(x) \)

1. \(\frac{d}{dx} (\log_a u) = \frac{1}{u \ln a} \cdot \frac{d(u)}{dx} \)

2. \(\frac{d}{dx} (\ln u) = \frac{1}{u} \cdot \frac{d(u)}{dx} \)
ANSWERS

<table>
<thead>
<tr>
<th>Q #</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
</tr>
<tr>
<td>5</td>
<td>c</td>
</tr>
<tr>
<td>6</td>
<td>b</td>
</tr>
<tr>
<td>7</td>
<td>a</td>
</tr>
<tr>
<td>8</td>
<td>b</td>
</tr>
<tr>
<td>9</td>
<td>a</td>
</tr>
<tr>
<td>10</td>
<td>c</td>
</tr>
<tr>
<td>11</td>
<td>b</td>
</tr>
<tr>
<td>12</td>
<td>b</td>
</tr>
<tr>
<td>13</td>
<td>c</td>
</tr>
<tr>
<td>14</td>
<td>a</td>
</tr>
<tr>
<td>15</td>
<td>a</td>
</tr>
<tr>
<td>16</td>
<td>b</td>
</tr>
<tr>
<td>17</td>
<td>a</td>
</tr>
<tr>
<td>18</td>
<td>c</td>
</tr>
<tr>
<td>19</td>
<td>b</td>
</tr>
<tr>
<td>20</td>
<td>c</td>
</tr>
<tr>
<td>21</td>
<td>b</td>
</tr>
<tr>
<td>22</td>
<td>b</td>
</tr>
<tr>
<td>23</td>
<td>a</td>
</tr>
<tr>
<td>24</td>
<td>c</td>
</tr>
<tr>
<td>25</td>
<td>a</td>
</tr>
</tbody>
</table>