

MILITARY TECHNOLOGICAL COLLEGE

GFP EXIT EXAM PRESCREENING SPECIMEN PAPER

Module name	Pure Mathematics	Module code	MTCG1018
Total Questions	25	Duration of exam	60 Minutes

Instructions:

- Use of only non- programmable calculators is allowed.
- The figures shown, if any, are only for illustration.
- A list of relevant **Formula sheet** is attached at the back.
- This exam carries 100% of the overall module mark.

Circle the correct answer in the following questions.

MTCG1018 – Pure Mathematics Prescreening Specimen Paper

Each question carries 4 marks.

1) An **oblique triangle** has ...

[Total Marks 100]

a) a right angle	b) one obtuse angle	c) two obtuse angles
------------------	---------------------	----------------------

2) In the triangle below, the value of y is ...

	z 65° 9 75° y x°
a) 4.8	b) 84 c) 8.4

3) The volume of a cylinder whose height is 6cm and diameter 8cm is ...

a) 1206 cm ³	b) 302 <i>cm</i> ³	c) 150 <i>cm</i> ³

4) If the **area** of a circle is $49\pi m^2$ then its radius is ...

a) 7 m	b) √7 <i>m</i>	c) 49 m

5) The graph between **class limits and frequency** is called ...

a) Histogram	b) Pie Chart	c) Bar Chart
--------------	--------------	--------------

6) ... is an example of **Quantitative-continuous data**.

a)Number of desks	b) Weight of fish	a) Brands of shoes
-------------------	-------------------	--------------------

7) If the mean of the following distribution is 9, then the value of x is ...

Marks	4	6	<i>x</i> + 7	10	15	
No. of students	5	10	10	7	8	

a) 2 b) 2.5	c) 20
-------------	-------

8) The standard deviation of the data from the sample observations 1, 4, 5, 7, 9 is...

|--|

9) If there are 11 books on a shelf, then 6 books can be arranged in ... ways.

a) 332640	b) 66	c) 462

10) If a die is thrown once. The probability of getting a **prime number** is ...

a) 0.16	b) 0 3	c) 0 5
	5) 010	

11) If A and B are **independent events** and $P(A) = \frac{2}{5}$ and $P(B) = \frac{3}{7}$ then P(AUB) is ...

MTCG1018 – Pure Mathematics Prescreening Specimen Paper Page **3** of **13**

a) $\frac{6}{35}$	b) $\frac{23}{35}$	c) $\frac{5}{12}$
55	55	14

12) If
$$P(A \cap B) = \frac{5}{21}$$
 and $P(A) = \frac{5}{9}$ then $P(B|A) = ...$

a) $\frac{1}{3}$	b) $\frac{3}{7}$	c) $\frac{7}{13}$
------------------	------------------	-------------------

13) ... line test is used to determine if a graph represents a function

a) Horizontal	b) Oblique	c) Vertical
---------------	------------	-------------

14) The ordered pairs ... represent a constant function

a) {(2, a), (3, a), (1, a)}	b) {(c, 1), (b, 2), (c, 3)}	c) { $(1, c), (2, c), (3, b)$ }

15) Given that f(x) = x - 2 and g(x) = 5x + 3, then f(g(x))...

a) $5x + 1$ b) $5x - 1$ c) $6x - 5$	a) 5 <i>x</i> + 1	b) 5 <i>x</i> − 1	c) 6 <i>x</i> – 5
-------------------------------------	-------------------	-------------------	-------------------

16) The graph of the function $y = (0.3)^x$ shows

a) Limited growth	b) decay	c) Unlimited growth
-------------------	----------	---------------------

17) If $\left(\frac{1}{2}\right)^{3x} = 2^{x-4}$, then the value of x is...

a) 1	b) – 2	c) 3

18) The expression for $log(xy^2)$ is...

a) $2logx + 2logy$ b) $2logx + logy$ c) $logx + 2logy$
--

19) If $log_b 2 = 0.69$, $log_b 3 = 1.10$ and $log_b 5 = 1.61$, then $log_b 30$ is equal to ...

a) 2.4	b) 3.4	c) 1.22
20) The function $f(x) = \begin{cases} x5 \\ -5 \\ 3x - 3x \end{cases}$	-3 if x > 2 if $x = 2$ is not continuous at x - 7 if $x < 2$	c = 2 because
a) $f(2)$ is not defined	b) $\lim_{x\to 2} f(x)$ does not exist	c) $\lim_{x \to 2} f(x) \neq f(2)$

21) For the function f(x) whose graph is given below, the correct statement is...

25) The derivative of $5x\cos^2 3x$ is ...

a) $5cos^2 3x - 15xsin 6x$	b) 5 <i>cos</i> ² 3x – 5xsin3x	c) <i>cos</i> ² 3 <i>x</i> – 15 <i>xsin</i> 6 <i>x</i>
----------------------------	---	---

END OF QUESTIONS

MTCG1018 – Pure Mathematics Prescreening Specimen Paper Page 6 of 13

Formula Sheet

MTCG1018 – Pure Mathematics Prescreening Specimen Paper

Page 7 of 13

 $MTCG1018-Pure \ Mathematics \ \ Prescreening \ Specimen \ Paper \ \ Page \ 8 \ of \ 13$

Sphere:

$$V = \frac{4}{3}\pi r^{3}$$
$$CSA = TSA = 4\pi r^{2}$$

Statistics

Relative frequency = $\frac{f \text{ of the class}}{\sum f}$ $\theta = relative \ frequency \times 360^{\circ}$

standard deviation $=\sqrt{Variance}$

For ungrouped data

Mean = $\overline{x} = \frac{\sum x}{n}$

Sample Variance $= s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$ or $s^2 = \frac{n \sum x_i^2 - (\sum x_i)}{n(n-1)}$

For grouped data

 $\overline{\mathbf{Mean}} = \overline{x} = \frac{\sum f_i x_i}{\sum f_i}$ $\mathbf{Median} = L_m + \left[\frac{\frac{N}{2} - cf_m}{f_m}\right]i$

Where, L_m = lower class boundary of the median class

N = the number of cases (items) in the set.

 cf_m = the cumulative frequency before the median class.

 f_m = frequency of the median class

i = class width or class size

$$\mathbf{Mode} = L_{mo} + \left[\frac{\Delta_1}{\Delta_1 + \Delta_2}\right] \mathbf{i}$$

Where, L_{mo} = lower class boundary of the modal class

- Δ_1 = the difference between the frequency of the modal class and the frequency of the class **before** the modal class.
- Δ_2 = the difference between the frequency of the modal class and the frequency of the class **after** the modal class.
- i =class width or class size

Sample Variance
$$= s^2 = \frac{\sum f_i (x_i - \overline{x})^2}{n-1}$$

or $s^2 = \frac{n \sum f_i x_i^2 - (\sum f_i x_i)^2}{n(n-1)}$

Probability

 If an experiment can result in any one of N different equally likely outcomes, and if exactly n of these outcomes corresponds to event A, then the probability of event A is

given by
$$P(A) = \frac{n}{N}$$

2) The number of permutations of n distinct objects is n!

3) The number of permutations of n distinct objects taken r at a time is ${}_{n}P_{r}$

4) The number of permutations of n distinct objects arranged in a circle is (n - 1)!

5) The number of combinations of n distinct objects taken r at a time is: ${}_{n}C_{r}$

6) If A and B are any two events, then $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

7) If A and B are two mutually exclusive events, then $P(A \cup B) = P(A) + P(B)$

MTCG1018 – Pure Mathematics Prescreening Specimen Paper Page 9 of 13

8) If A and A' are complementary events, then P(A) + P(A') = 1

9) If in an experiment, the events A and B can both occur, then $P(A \cap B) = P(A) \cdot P(B/A)$

10) If two events A and B are independent, then $P(A \cap B) = P(A)$. P(B).

Properties of exponential function

- 1) $a^{x}a^{y} = a^{x+y}$
- $2) \quad \left(a^x\right)^y = a^{xy}$
- $3) \quad (ab)^x = a^x b^x$
- $4) \quad \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$
- $5) \quad \frac{a^x}{a^y} = a^{x-y}$
- 6) $a^x = a^y$ if and only if x = y
- 7) $a^x = b^x$ if and only if a = b

Definition of logarithmic function

 $y = \log_a x \Leftrightarrow x = a^y$

Properties of Logarithms

1)
$$\log_a(xy) = \log_a x + \log_a y$$

2)
$$\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$$

3)
$$\log_a x^b = b \log_a x$$

<u>Quadratic Equation</u> Solution of $ax^2 + bx + c = 0$ is given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Rules Of Differentiation

1.
$$\frac{d(c)}{dx} = 0 \text{ where c is any constant.}$$

2.
$$\frac{d}{dx}[a.f(x))] = a.\frac{df(x)}{dx}$$

3.
$$\frac{d(x^n)}{dx} = nx^{n-1}$$

4.
$$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$$

5.
$$\frac{d}{dx}[f(x).g(x)] = f(x).g'(x) + g(x).f'(x)$$

or

$$\frac{d}{dx}[u.v] = u.\frac{dv}{dx} + v.\frac{du}{dx} \text{ where u and v}$$

are two different functions of x.

5. if
$$y = \frac{f(x)}{g(x)}$$
,
then $\frac{dy}{dx} = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$

General Power form:

$$\frac{d(u^n)}{dx} = n u^{n-1} \frac{d(u)}{dx} \text{ where } u = f(x).$$

Derivatives of Trigonometric Functions

1.
$$\frac{d}{dx}(\sin u) = \cos u \cdot \frac{d(u)}{dx}$$
 where $u = f(x)$.
2. $\frac{d}{dx}(\cos u) = -\sin u \cdot \frac{d(u)}{dx}$
3. $\frac{d}{dx}(\tan u) = \sec^2 u \cdot \frac{d(u)}{dx}$

Derivatives of Exponential Functions Let *a* be any real number but not zero and u = f(x)

MTCG1018 – Pure Mathematics Prescreening Specimen Paper Page 10 of 13

1.
$$\frac{d}{dx}(a^u) = a^u \ln a \cdot \frac{d(u)}{dx}$$

2. $\frac{d}{dx}(e^u) = e^u \cdot \frac{d(u)}{dx}$

Derivatives of Logarithmic Functions

Let *a* be any real number but not zero and

$$u = f(x)$$

1. $\frac{d}{dx}(\log_a u) = \frac{1}{u \ln a} \frac{d(u)}{dx}$
2. $\frac{d}{dx}(\ln u) = \frac{1}{u} \frac{d(u)}{dx}$

ANSWERS

Q #	Answer
1	b
2	С
3	b
4	а
5	с

Q #	Answer
6	b
7	а
8	b
9	а
10	с

Q #	Answer
11	b
12	b
13	с
14	a
15	а

Q #	Answer
16	b
17	а
18	с
19	b
20	с

Q #	Answer
21	b
22	b
23	а
24	c
25	а

DRAFT / ROUGH WORK

SEL