MILITARY TECHNOLOGICAL COLLEGE

ACADEMIC YEAR 2017-2018
GENERAL STUDIES DEPARTMENT
GSD-EXIT EXAMINATION

Module Name	Basic Mathematics	Module Code	MTCG1016
Date:		Duration of Exam	90 Minutes

STUDENT DETAILS

Student ID.		Exam seat number	

Instructions:

- Write the information required on the front page. Use blue / black ink or ball-point pen.
- Students should not keep any helping / study materials with them. Copying, cheating and any kind of malpractice in the examination are strictly prohibited.
- Use of only non- programmable calculators is allowed.
- Answer the questions in the space provided. Extra sheets will not be allowed or provided.
- All necessary solutions should be shown completely in Section B, otherwise marks for method will be lost.
- The figures shown, if any, are only for illustration.
- A Formula Sheet is attached at the end of this paper.
- Do not open this question paper until the invigilator has told you to do so.

MARK DISTRIBUTION			
Section	No. of Questions \times Marks per Question $=$ Total Marks Allocated	$1{ }^{\text {st }}$ Marking	$2{ }^{\text {nd }}$ Marking
A	$20 \times 1=20$ Marks		
B	$6 \times 5=30$ Marks		
	Total $=50$ Marks	150	150
	Final Marks		

$1^{\text {st }}$ Marker
Name and Signature
$2^{\text {nd }}$ Marker
Name and Signature

Section A

Answer all the following $\mathbf{2 0}$ questions. Each question carries 1 mark.
[Total Marks 20]

Circle the correct answer of the following questions e.g (d)

1. Which of the following is Not a prime number?
a) 31
b) 51
c) 19
2. The solution for the equation $\frac{2 x-2}{4}=\frac{3 x-5}{2}$ is...
a) $x=-2$
b) $x=\frac{3}{8}$
c) $x=2$
3. If $\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$, when you make f, the subject of the formula...
a) $f=\frac{u+v}{u v}$
b) $f=\frac{u v}{u+v}$
c) $f=\frac{u v}{v-u}$
4. Which property is used in $12 \times(4 \times 8)=(12 \times 4) \times 8)$
a) Commutative
b) Distributive
c) Associative
5. The solution for the inequality $-3<7-2 x<7$ is
a) $0<x<5$
b) $0>x>5$
c) $-5<x<0$
6. The angle $\frac{5 \pi}{4}$ in degrees is
a) 225°
b) 3.925°
c) 135°
7. If $\tan A=\frac{3}{4}$, then $\sin A=$
a) $\frac{4}{5}$
b) $\frac{3}{5}$
c) $\frac{3}{4}$
8. Which of the following shows the graph of $y=-\sin x$?

9. If a student who was absent for 14 hours during the term for basic Math was reported to have 20% absence, what were the total number of hours for Basic Math?
a) 72 hours
b) 16.8 hours
c) 70 hours
10. If you change 300 K into degrees Celcius $\left({ }^{\circ} \mathrm{C}\right)$ you get:
a) $-26.85^{\circ} \mathrm{C}$
b) $26.85^{\circ} \mathrm{C}$
c) $80.33^{\circ} \mathrm{C}$
11.The following graph is symmetric about ...

a) Y-axis
b) X -axis
c) Origin
11. Which of the following are Pythagorean triples?
a) $(4,9,16)$
b) $(8,15,17)$
c) $(3,4,6)$
12. Simplify the following : $2 \frac{1}{3}+\frac{1}{4}-2 \frac{1}{2}$
a) $\frac{3}{5}$
b) $\frac{1}{12}$
c) $\frac{1}{5}$
13. The value of y in the simultaneous equations: $x+5 y=9$

$$
3 x-5 y=7
$$

is
a) 2
b) 4
c) 1
15. The period for the graph of the function $y=\sin \frac{1}{2} x$ is \ldots
a) 4π
b) 2π
c) π
16. The value of the angle marked x° is...

a) 57°
b) 94°
c) 66°
17. The equation of the circle, with center at $(-2,0)$ and radius 2 units is :
a) $x^{2}+(y+2)^{2}=4$
b) $(x-2)^{2}+y^{2}=2$
c) $(x+2)^{2}+y^{2}=4$
18. Factorise completely: $x y-2 x-3 y+6$
a) $(x+3)(y+2)$
b) $(x-3)(y+2)$
c) $(x-3)(y-2)$
19. The distance between the points $A(-1,1)$ and $B(-5,4)$ is \ldots
a) 5
b) -5
c) 4
20. Given the radius of a sector is $r=4 \mathrm{~cm}$ and the area $A=8.4 \mathrm{~cm}^{2}$. The angle θ is ...
a) 2.1 radians
b) 1.05 radians
c) 60 radians

Section B

Answer all the following 5 questions showing all the steps in your answer. Each question carries 6 marks.
[Total = $\mathbf{3 0}$ Marks]

1. a) Simplify: $\frac{3^{n} 9^{n-2}}{27^{n-1}}$
[3 Marks]
b) Simplify: $\frac{2 x}{x^{2}-4}-\frac{1}{x+2}$
[3 Marks]
2. Find the equation of a straight line that passes through the points $A(-1,-2)$ and $B(1,2)$
[6 Marks]
3. Given the universal set $U=\{x \mid x$ is a natural number less than 10$\}$

$$
\begin{aligned}
& A=\{1,3,5,7,9\} \\
& B=\{2,3,5,7\}
\end{aligned}
$$

a) Draw a Venn Diagram to show the relationship between the sets, U, A and B.
b) List the elements of set A^{\prime}
[1 Mark]
c) What is the value of $n(A \cup B)$?
[1 Mark]
d) List the elements of set $(A \cap B)^{\prime}$
[1 Mark]
4. In the diagram below, find the values of the sides labelled x, y and the angle θ. Give your answers correct to 2 significant figures if not exact.

[6 Marks]
5. a) A number is 12 more than the other. Find the two numbers if their sum is 48 . [3 Marks]
b) Solve the quadratic equation : $3 x^{2}-10 x-8=0$
[3 Marks]

END

1. Conversions

1 inch $=2.54 \mathrm{~cm}$
1 metre $=39.37$ inches
1 mile $=1.609 \mathrm{~km}$
1 ton $=1000 \mathrm{~kg}$
$1 \mathrm{~kg}=2.2$ pounds
1 ounce $=0.0625$ pounds
1 litre $=1000 \mathrm{~cm}^{3}$
1 imperial gallon $=4.55$ litres

Temperature:

- $\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$
- ${ }^{\circ} \mathrm{F}=1.8^{\circ} \mathrm{C}+32$

Angles (radians and degrees)

- 1 degree $=\frac{\pi}{180}$ radians
- 1 radian $=\frac{180}{\pi}$ degrees

2. Sector and Arc

- Length of Arc, $\boldsymbol{l}=\boldsymbol{r} \boldsymbol{\theta}$,
- Area of Sector, $A=\frac{1}{2} \boldsymbol{r}^{\mathbf{2}} \boldsymbol{\theta}$ where $\boldsymbol{\theta}$ is in radians.

3. Pythagoras theorem

$(\text { Side } 1)^{2}+(\text { Side } 2)^{2}=(\text { Hypotenuse })^{2}$ or $a^{2}+b^{2}=c^{2}$

4. Trigonometry

$\sin \theta=\sin C=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{O}{H}$
$\cos \theta=\cos C=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{A}{H}$
$\tan \theta=\tan C=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{O}{A}$
$\csc \theta=\frac{1}{\sin \theta}$
$\sec \theta=\frac{1}{\cos \theta}$
$\cot \theta=\frac{1}{\tan \theta}$
5. Quadrant System

II Quadrant Sin Positive $\begin{aligned} & 90^{0}+\theta, \\ & 180^{\circ}-\theta \end{aligned}$		I Quadrant All Positive $\begin{gathered} 90^{0}-\theta \\ 360^{0}+\theta \end{gathered}$
III Quadrant Tan Positive $\begin{aligned} & 270^{0}-\theta \\ & 180^{0}+\theta \end{aligned}$	\downarrow	IV Quadrant Cos Positive $\begin{aligned} & 270^{0}+\theta \\ & 360^{0}-\theta \end{aligned}$

For $\quad y=\operatorname{asin} b x$ and $y=a \cos b x$

- Amplitude $=|a|$
- No. of Cycles from 0° to $360^{\circ}=|b|$
- Period $=\frac{2 \times 180^{\circ}}{|b|}=\frac{360^{\circ}}{|b|}$ or $\frac{2 \pi}{|b|}$

6. Straight line

- General equation of the straight line is $\boldsymbol{A x}+\boldsymbol{B y}=\boldsymbol{C}$, where A, B and C are constants (with A and B not both zero) \& x and y are variables.
- Slope-intercept form of the straight line can also be written as $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$, where, $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=$ slope or gradient of the line and
$c=y$-intercept.
- Equation of straight line passing through $\left(x_{1}, y_{1}\right)$ and slope \boldsymbol{m} is

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

7. Quadratic Formula

Solution of $\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}=\mathbf{0}$ is given by
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

8. Circle

Equation of circle with center $C(h, k)$ and radius r, where $r>0$ is
$(x-h)^{2}+(y-k)^{2}=r^{2}$

9. Distance formula

The distance between two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Draft/Rough Work

