

MILITARY TECHNOLOGICAL COLLEGE

ACADEMIC YEAR

GENERAL STUDIES DEPARTMENT

Module Name & Code	PHYSICS & MTCG1017		
Date	Duration	Total Marks	
	90 Minutes	50	

STUDENT DETAILS

Student ID.	Seat No	
-------------	---------	--

Instructions:

- Write the information required on the front page. Use blue / black ink or ball-point pen.
- Students should not keep any helping / study materials with you. Copying, cheating and any kind of malpractices in the examination are strictly prohibited.
- Use of only **non-programmable** calculators allowed.
- Answer the questions in the space provided. Extra sheets are neither allowed nor provided.
- All necessary solutions should be shown in Section B and Section C, otherwise marks for method will be lost.
- The figures shown, if any, are only illustration.
- **Do not open** this question paper until the invigilator has told you to do so.

	MARK DISTRIBUTION		
Section	No. of Questions × Marks per Question = Total Marks Allocated	1 st Marking	2 nd Marking
A	$20 \times 1 = 20 \text{ Marks}$		
В	10 Marks		
С	20 Marks		
	Total = 50 Marks	/50	/50
	Final Marks	/	/50

1st Marker Name and Signature 2nd Marker Name and Signature

Re-sit Exam Page 1 of 11 MTCG1017 - Physics

Section-A

Answer all the following 20 questions. Each question carries 1 mark.

 $(20 \times 1 = 20 \text{ Marks})$

Circle the letter of the correct answer e.g:

		_
(_	
\	a	
\		_

20 110 W III all Court qualitities are there	1.	How	many	base	quantities	are	there
--	----	-----	------	------	------------	-----	-------

- a) 3
- b) 7
- c) 5

- a) molecule
- b) isotopes
- c) isobars

- a) boiling
- b) condensation
- c) melting

a)
$$n(\mathbf{A}+\mathbf{B}) = n\mathbf{A}+n\mathbf{B}$$

- b) A+B=B+A
- c) $\mathbf{A} + \mathbf{B} = -\mathbf{B} + \mathbf{A}$

- a) If the angle between the force and the displacement is zero
- b) If the angle between the force and the displacement is 90°
- c) If the angle between the force and the displacement is 180°

or Thi allorate act	celerates from rest to 72 km/h in 10 sec, then its acceleration is:
a) 7.2 m/s^2	
b) 5 m/s ²	
c) 2 m/s^2	
7. If the time per	iod of an object is 20 μs, then its frequency will be:
a) 2000 Hz	
b) 50 kHz	
c) 500 kHz	
8. A body with a the momentum	mass of 5 kg accelerated from rest to 10 m/s. What is the change in 1?
a) 50 kg m/s	
b) 5 kg m/s	
c) 0.5 kg m/s	
9. The physical of	quantity which is equal to the product of force and velocity is:
a) work	
b) energy	
b) energyc) power	
c) power	with mass of 600 g has a density of 2000 kg/m^3 , then its volume
c) power 10.A steel sphere	with mass of 600 g has a density of 2000 kg/m^3 , then its volume
c) power 10.A steel sphere is:	with mass of 600 g has a density of 2000 kg/m^3 , then its volume
c) power 10.A steel sphere is: a) 3×10^{-4} m ³	with mass of 600 g has a density of 2000 kg/m^3 , then its volume
 c) power 10.A steel sphere is: a) 3×10⁻⁴ m³ b) 30×10⁻⁴ m³ c) 300×10⁻⁴ m³ 	with mass of 600 g has a density of 2000 kg/m³, then its volume ydrometer in pure water it reads
 c) power 10.A steel sphere is: a) 3×10⁻⁴ m³ b) 30×10⁻⁴ m³ c) 300×10⁻⁴ m³ 	
 c) power 10.A steel sphere is: a) 3×10⁻⁴ m³ b) 30×10⁻⁴ m³ c) 300×10⁻⁴ m³ 11. If we dip a hy 	
 c) power 10.A steel sphere is: a) 3×10⁻⁴ m³ b) 30×10⁻⁴ m³ c) 300×10⁻⁴ m³ 11. If we dip a hy a) 1 	

12. A piston holds a liquid in a tube of cross section area of 25 m ² with a force of 200N, then the static pressure will be:
a) 5000 pascal
b) 8 pascal
c) 12.5 pascal
13. Which of the following statements is true ?
a) the body will float in water if buoyancy is positive
b) the body will float in water if buoyancy is negative
c) the body will float in water if buoyancy is neutral
14 . How much internal energy raises if we heat 0.2 kg of water from 10°C to 100°C? (specific heat of water is 4200 J/kg K)
a) 7560 J
b) 75600 J
c) 756 J
15. Which of the following relations is true for Boyle's law?
a) PV = constant
b) PT = constant
c) VT = constant
16. The process of heat transfer in liquids from hotter part to colder part by the actual movement of the particle is known as:
a) radiation
b) conduction
c) convection
17. A convex lens of magnification 3, forms an image at a distance of 30 cm from the optical center, what may be the position of object from optic center?
a) 90 cm
b) 10 cm

c) 0.1 cm

a) 350 m/s	
b) 1400 m/s	
c) 330 m/s	
20. Intensity of sound level can be mean	sured in
a) Hartz	
a) Hertz	
b) Decibels	
c) m/s	
G. A.	D (10 N/L)
Section	-B (10 Marks)
21 a) Match the following (Column-I w answer in the box given below: (4×1=4 marks)	with Column-II) by using the letter of the correct
(Column-I)	(Column-II)
1.The magnitude of the gravitational for on an object is:	rce a. inertia
2 Nawton's first law avalains:	h notantial anaray
2. Newton's first law explains:	b. potential energy
3. Energy possessed due to motion of a body is	c. weight
4. The up thrust force when a body	d. kinetic energy
submerged in water is called:	d. Kinetic energy
	e. buoyancy
1- 2-	3- 4-

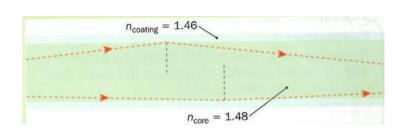
18. If the angle of **incidence** of a light beam is 38°, what is the angle of **reflection**?

19. If the wavelength and frequency of sound wave is 0.5m and 700 Hz respectively,

a) 38°b) 52°c) 128°

then velocity of sound wave is:

(2 marks)


S.No	Lens	Mirror
1.		
2.		

- c) Read the questions and <u>underline</u> the **correct** answer given in the **brackets**. $(4\times1=4 \text{ marks})$
 - i) Two atoms with the same atomic number but have different mass number are called__(isotopes / isobars)
 - ii) Work is maximum if angle between force and displacement is $(90^{\circ} / 0^{\circ})$
 - iii) Low viscosity liquids flow___(faster / slower)
 - iv) when wave particles move parallel to the direction of wave motion the wave is called: (longitudinal wave / transverse wave)

Section-C (20 Marks)

Answer the following questions and show all the necessary working steps.

22. The diagram shows an optical fiber with a core of refractive index 1.48 and a coating of refractive index 1.46. What is the critical angle of incidence for this optical fiber? (3 marks)

23) The frequency of a sound wave is 35 Hz and	d with a speed of 320 m/s.
Find, a) the wave length of sound wave.	(1.5 marks)
b) the time period of this wave.	(0.5 mark)
24) A car moving along a straight highway with within a distance of 220 m.	a speed of 144 km/h is brought to rest
(i) the retardation(deceleration) of the car.	(2 marks)
(ii) the time it will take to stop.	(2 marks)

25) The pressure of a sample of gas kept at constant volume is 105 kPa at 0 will be its pressure at 70°C?	marks)
26) Taking atmospheric pressure as 101325 N/m², convert the following gap pressures into absolute pressure. Give your answer in kPa. (1.3)	
pressures into absolute pressure. Give your answer in kPa. (1.3)	
pressures into absolute pressure. Give your answer in kPa. (1.3)	
pressures into absolute pressure. Give your answer in kPa. (1.3)	
pressures into absolute pressure. Give your answer in kPa. (1.3)	
pressures into absolute pressure. Give your answer in kPa. (1.4) a) 500 kN/m ²	
pressures into absolute pressure. Give your answer in kPa. (1.4) a) 500 kN/m ²	
pressures into absolute pressure. Give your answer in kPa. (1.4) a) 500 kN/m ²	
pressures into absolute pressure. Give your answer in kPa. (1.4) a) 500 kN/m ²	
pressures into absolute pressure. Give your answer in kPa. (1.9) a) 500 kN/m² b) 15 MN/ m²	
pressures into absolute pressure. Give your answer in kPa. (1.9) a) 500 kN/m² b) 15 MN/ m²	

27) An object "A" of mass 6 kg travelling in a straight line with a speed of 5 m/s collides with other object "B" with a mass of 5 kg travelling in the same straight line but in the opposite direction with a speed of 4 m/s. After the collision the object "A" continues to move in the same direction with a speed of 2 m/s. What is the speed of object "B" after the collision? (2.5 marks)

MTCG1017 - Physics Re-sit Exam Page **9** of **11**

FORMULAE SHEET

$$>$$
 $v = S/t$

$$\rightarrow$$
 $a = (v - u) / t$

$$\rightarrow$$
 $v = u + at$

$$\triangleright$$
 v = gt (freely falling body)

$$S = \frac{1}{2}$$
 gt² (freely falling body)

$$v^2 = u^2 + 2as$$

$$> s = ut + \frac{1}{2}at^2$$

$$> s = \frac{1}{2}(u + v) t$$

$$\triangleright \omega_f = \omega_i + \alpha t$$

$$\Delta \theta = \omega_{i}t + \frac{1}{2}\alpha t^{2}$$

$$> \omega_{\rm f}^2 = \omega_{\rm i}^2 + 2\alpha\theta$$

$$\Rightarrow$$
 $a_c = v^2 / r = r \omega^2$

$$F_c = mv^2 / r = m r \omega^2$$

$$>$$
 S = r θ

$$\rightarrow$$
 V = r ω

$$\triangleright$$
 Moment of force = F. d

$$\triangleright$$
 Pressure = F / A

$$T = \frac{1}{f}$$

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v} \text{ or } \frac{1}{f} = \frac{1}{p} + \frac{1}{q}$$

$$>dQ = dU + dW$$

$$\triangleright Q = c m \Delta T$$

$$\triangleright \mathbf{Q} = \mathbf{m} \mathbf{L}_f$$

$$\triangleright$$
L₂ - L₁ = L₁ ($\theta_2 - \theta_1$) α

$$PV = nRT$$

>
$$Efficiency = \frac{Work\ output}{Energy\ input}$$

➤ Absolute pressure = gauge pressure+ atmospheric pressure

> Speed of light in air =
$$3 \times 10^8$$
 m/s

$$>$$
 Magnification = $\frac{\text{Image height}}{\text{Object height}}$

> n =
$$\frac{\text{speed of light (in air)}}{\text{speed of light (in medium)}} = \frac{C}{V}$$

$$> n_1 \sin i = n_2 \sin r$$

 \triangleright Speed of sound in air = 331 m/s

$$>$$
 $V = f\lambda$

> Speed of sound =
$$\sqrt{\gamma RT}$$

$$ightharpoonup$$
 Decibel level (β) = $10\log\frac{I}{I_0}$

$$\rightarrow \mu=1/\sin C$$

$$P_1 + \frac{\rho v_1^2}{2} + \rho g h_1 = P_2 + \frac{\rho v_2^2}{2} + \rho g h_2$$

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

> Strain = Change in dimension / original dimension = $\Delta l / l$

$$\rightarrow$$
 T = 2 $\pi\sqrt{\left(\frac{L}{g}\right)}$

$$\rightarrow$$
 T = 1/f

$$F = mg$$

$$\triangleright$$
 P.E = mgh

$$ightharpoonup K.E = \frac{1}{2} \, mv^2$$

> Young's modulus = stress/strain

$$v = (33 \text{ lm/s}) \sqrt{\frac{T(K)}{273K}}$$

 \triangleright Velocity of light = 3×10^8 m/s

 \rightarrow m₁u₁+m₂u₂=m₁v₁+m₂v₂

Space for Rough Work

MTCG1017 - Physics Re-sit Exam Page **11** of **11**