MILITARY TECHNOLOGICAL COLLEGE
ACADEMIC YEAR
GENERAL STUDIES DEPARTMENT
SAMPLE EXAMINATION PAPER

Module Name \& Code	PHYSICS \& MTCG1017	
Date	Duration	Total Marks
	90 Minutes	50

STUDENT DETAILS

Student ID.		Seat No

Instructions:

- Write the information required on the front page. Use blue / black ink or ball-point pen.
- Students should not keep any helping / study materials with you. Copying, cheating and any kind of malpractices in the examination are strictly prohibited.
- Use of only non-programmable calculators allowed.
- Answer the questions in the space provided. Extra sheets are neither allowed nor provided.
- All necessary solutions should be shown in Section B and Section C, otherwise marks for method will be lost.
- The figures shown, if any, are only illustration.
- Do not open this question paper until the invigilator has told you to do so.

MARK DISTRIBUTION						
Section	No. of Questions \times Marks per Question $=$ Total Marks Allocated	$1^{\text {st }}$ Marking	$2^{\text {nd }}$ Marking			
A	$20 \times 1=20$ Marks					
B	10 Marks					
C	20 Marks					
Total $=50$ Marks					150	150

$1{ }^{\text {st }}$ Marker
Name and Signature

$2^{\text {nd }}$ Marker
Name and Signature

Section-A

Answer all the following 20 questions. Each question carries 1 mark.

(20×1 = 20 Marks)
Circle the letter of the correct answer e.g:

```
a
```

1. How many base quantities are there?
a) 3
b) 7
c) 5
2. When atoms bond together they form \qquad
a) molecule
b) isotopes
c) isobars
3. The phase change from solid to liquid is called :
a) boiling
b) condensation
c) melting
4. If \mathbf{A}, \mathbf{B} are two vectors, which of the following relations represent commutative law?
a) $\mathrm{n}(\mathbf{A}+\mathbf{B})=\mathrm{nA}+\mathrm{n} \mathbf{B}$
b) $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
c) $A+B=-B+A$
5. In which of the following cases the work done by a force is maximum?
a) If the angle between the force and the displacement is zero
b) If the angle between the force and the displacement is 90°
c) If the angle between the force and the displacement is 180°
6. An aircraft accelerates from rest to $72 \mathrm{~km} / \mathrm{h}$ in 10 sec , then its acceleration is:
a) $7.2 \mathrm{~m} / \mathrm{s}^{2}$
b) $5 \mathrm{~m} / \mathrm{s}^{2}$
c) $2 \mathrm{~m} / \mathrm{s}^{2}$
7. If the time period of an object is 20μ s, then its frequency will be:
a) 2000 Hz
b) 50 kHz
c) 500 kHz
8. A body with mass of 5 kg accelerated from rest to $10 \mathrm{~m} / \mathrm{s}$. What is the change in the momentum?
a) $50 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
b) $5 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
c) $0.5 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
9. The physical quantity which is equal to the product of force and velocity is:
a) work
b) energy
c) power
10.A steel sphere with mass of 600 g has a density of $2000 \mathrm{~kg} / \mathrm{m}^{3}$, then its volume is:
a) $3 \times 10^{-4} \mathrm{~m}^{3}$
b) $30 \times 10^{-4} \mathrm{~m}^{3}$
c) $300 \times 10^{-4} \mathrm{~m}^{3}$
10. If we dip a hydrometer in pure water it reads \qquad .
a) 1
b) 9.8
c) 13.6
11. A piston holds a liquid in a tube of cross section area of $25 \mathrm{~m}^{2}$ with a force of 200N, then the static pressure will be:
a) 5000 pascal
b) 8 pascal
c) 12.5 pascal
12. Which of the following statements is true?
a) the body will float in water if buoyancy is positive
b) the body will float in water if buoyancy is negative
c) the body will float in water if buoyancy is neutral
13. How much internal energy raises if we heat 0.2 kg of water from $10^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$? (specific heat of water is $4200 \mathrm{~J} / \mathrm{kg} \mathrm{K}$)
a) 7560 J
b) 75600 J
c) 756 J
14. Which of the following relations is true for Boyle's law?
a) $\mathrm{PV}=$ constant
b) $\mathrm{PT}=$ constant
c) $\mathrm{VT}=$ constant
15. The process of heat transfer in liquids from hotter part to colder part by the actual movement of the particle is known as:
a) radiation
b) conduction
c) convection
16. A convex lens of magnification 3, forms an image at a distance of 30 cm from the optical center, what may be the position of object from optic center?
a) 90 cm
b) 10 cm
c) 0.1 cm
17. If the angle of incidence of a light beam is 38°, what is the angle of reflection?
a) 38°
b) 52°
c) 128°
18. If the wavelength and frequency of sound wave is 0.5 m and 700 Hz respectively, then velocity of sound wave is:
a) $350 \mathrm{~m} / \mathrm{s}$
b) $1400 \mathrm{~m} / \mathrm{s}$
c) $330 \mathrm{~m} / \mathrm{s}$
20.Intensity of sound level can be measured in \qquad .
a) Hertz
b) Decibels
c) m / s

Section-B (10 Marks)

21 a) Match the following (Column-I with Column-II) by using the letter of the correct answer in the box given below:
($4 \times 1=4$ marks)

(Column-I)	(Column-II)
1.The magnitude of the gravitational force on an object is:	a. inertia
2. Newton's first law explains:	b. potential energy
3. Energy possessed due to motion of a body is	c. weight
4.The up thrust force when a body submerged in water is called:	d. kinetic energy
	e. buoyancy

$1-$	$2-$	$3-$	$4-$

b) Write any two differences between lens and mirror.

S.No	Lens	Mirror
1.		
2.		

c) Read the questions and underline the correct answer given in the brackets. ($4 \times 1=4$ marks)
i) Two atoms with the same atomic number but have different mass number are called_(isotopes / isobars)
ii) Work is maximum if angle between force and displacement is_($90^{\circ} / 0^{\circ}$)
iii) Low viscosity liquids flow \qquad (faster / slower)
iv) when wave particles move parallel to the direction of wave motion the wave is called: (longitudinal wave / transverse wave)

Section-C (20 Marks)

Answer the following questions and show all the necessary working steps.

22. The diagram shows an optical fiber with a core of refractive index 1.48 and a coating of refractive index 1.46. What is the critical angle of incidence for this optical fiber?
(3 marks)

23) The frequency of a sound wave is 35 Hz and with a speed of $320 \mathrm{~m} / \mathrm{s}$.

Find,

a) the wave length of sound wave.
(1.5 marks)
b) the time period of this wave.
(0.5 mark)
24) A car moving along a straight highway with a speed of $144 \mathrm{~km} / \mathrm{h}$ is brought to rest within a distance of 220 m .

Find,

(i) the retardation(deceleration) of the car.
(2 marks)
(ii) the time it will take to stop.
(2 marks)
25) The pressure of a sample of gas kept at constant volume is 105 kPa at $0^{\circ} \mathrm{C}$. What will be its pressure at $70^{\circ} \mathrm{C}$?
26) Taking atmospheric pressure as $101325 \mathrm{~N} / \mathrm{m}^{2}$, convert the following gauge pressures into absolute pressure. Give your answer in kPa .
a) $500 \mathrm{kN} / \mathrm{m}^{2}$
b) $15 \mathrm{MN} / \mathrm{m}^{2}$
c) 7000 Pa
27) An object "A" of mass 6 kg travelling in a straight line with a speed of $5 \mathrm{~m} / \mathrm{s}$ collides with other object " B " with a mass of 5 kg travelling in the same straight line but in the opposite direction with a speed of $4 \mathrm{~m} / \mathrm{s}$. After the collision the object "A" continues to move in the same direction with a speed of $2 \mathrm{~m} / \mathrm{s}$. What is the speed of object "B" after the collision?
(2.5 marks)

FORMULAE SHEET

$>\quad \mathrm{v}=\mathrm{S} / \mathrm{t}$
$>\mathbf{a}=(\mathbf{v}-\mathbf{u}) / \mathbf{t}$
$\Rightarrow \mathbf{v}=\mathbf{u}+\mathbf{a t}$
$>\quad v=g t(f r e e l y$ falling body)
$>S=1 / 2$ gt 2 (freely falling body)
$>\mathbf{v}^{2}=u^{2}+2 \mathrm{as}$
$>\mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{at}{ }^{2}$
$>s=1 / 2(u+v) t$
$>\omega_{\mathrm{f}}=\omega_{\mathrm{i}}+\boldsymbol{\alpha t}$
$>\Delta \theta=\omega_{i} t+1 / 2 \alpha t^{2}$
$>\omega_{\mathrm{f}}{ }^{2}=\omega_{\mathrm{i}}{ }^{2}+2 \alpha \theta$
$>a_{c}=v^{2} / r=r \omega^{2}$
$\Rightarrow \mathbf{F}_{\mathrm{c}}=\mathbf{m v}^{\mathbf{2}} / \mathbf{r}=\mathbf{m r} \boldsymbol{\omega}^{2}$
$>\mathbf{S}=\mathbf{r} \theta$
$>\mathbf{V}=\mathbf{r} \omega$
$>$ Moment of force $=$ F. d
$>$ Stress $=$ Force $/$ Area
\rightarrow Pressure $=$ F / A
$>T=\frac{1}{f}$
$>\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$ or $\frac{1}{f}=\frac{1}{p}+\frac{1}{q}$
$>d Q=d U+d W$
$>Q=\mathrm{cm} \Delta T$
$>\mathbf{Q}=\mathbf{m L}_{f}$
$>\mathrm{L}_{2}-\mathrm{L}_{1}=\mathrm{L}_{1}\left(\theta_{2}-\theta_{1}\right) \alpha$
$>\mathbf{P V}=\mathbf{n R T}$
$>$ Efficiency $=\frac{\text { Work output }}{\text { Energy input }}$
$>$ Speed of light in air $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$>$ Magnification $=\frac{\text { Image height }}{\text { Objectheight }}$
$>\mathrm{n}=\frac{\text { speed of light (in air) }}{\text { speed of light (in medium) }}=\frac{C}{V}$
$>n_{1} \sin i=n_{2} \sin r$
$>$ Speed of sound in air $=331 \mathrm{~m} / \mathrm{s}$
$>\mathrm{V}=f \lambda$
$>$ Speed of sound $=\sqrt{\gamma \mathbf{R T}}$
$>\operatorname{Decibel} \operatorname{level}(\beta)=10 \log \frac{I}{I_{0}}$
$>\mu=1 / \sin C$
$>P_{1}+\frac{\rho v_{1}^{2}}{2}+\rho g h_{1}=P_{2}+\frac{\rho v_{2}^{2}}{2}+\rho g h_{2}$
$>\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
$>$ Strain $=$ Change in dimension $/$ original dimension $=\Delta l / l$
$\Rightarrow \mathrm{T}=2 \pi \sqrt{\left(\frac{L}{g}\right)}$
$\Rightarrow \mathrm{T}=1 / \mathrm{f}$
$>\mathrm{F}=\mathbf{m g}$
$>$ P.E $=\mathbf{m g h}$
\rightarrow K.E $=1 / 2 \mathbf{m v}^{2}$
$>$ Young's modulus $=$ stress/strain
$>v=(331 \mathrm{~m} / \mathrm{s}) \sqrt{\frac{T(K)}{273 K}}$
$>$ Velocity of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$>\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}=\mathrm{m}_{1} \mathrm{~V} 1+\mathrm{m}_{2} \mathrm{~V}_{2}$

[^0]
Space for Rough Work

[^0]: $>$ Absolute pressure = gauge pressure + atmospheric pressure

